
Effective Multi-Threading

In Befunge

Zachary Wade

March 15, 2017

Abstract

Befunge is among the most premiere programming languages to have
ever been created. With a simple yet powerful feature set, intuitive pro-
gram flow, and true platform independence, there are few reasons not
to use Befunge. However, in a world that has become so obsessed with
efficient and fast algorithms, Befunge’s single threaded limitations pre-
vent it from being widely adopted by the current generation of computer
scientists. In this paper, we will examine multi-threaded Befunge in the
context of the newly-minted Befungell language.

1 Befunge:
A Background

The original version of Befunge (now
known as Befunge-93) was truly a
marvel of programming language de-
sign. Forgoing standard paradigms like
classes, objects, or even types, it in-
stead made use of a truly novel two-
dimensional program execution layout.
Let us, for a moment, consider the
unadulterated genius of this design de-
cision. Not only does it exceed the
linear limitations of a standard turing-
machine-style programming language,
but it frees the developer up to use
and reuse code creatively. Want to add
a comment? Just route the execution
around the text. Want to reuse a por-
tion of code? Just jump into the mid-
dle of that area.

Not only is the program execution
brilliant, but the very simplicity of pro-
gram design makes Befunge a revolu-
tionary language. Instead of manag-
ing a ton of individual variables, Be-
funge provides only a single stack –
data goes in, data comes out. On
top of that, Befunge is a truly dy-
namic language; it can modify itself as
it’s running. Few other programming
languages have such flexibility. Con-
sider, for instance, Figure 1, a very
readable ”FizzBuzz” program. As is
obvious, execution begins in the top
left, and is directed to the right where
the main control loop begins. In Be-
funge, control loops are literal; unlike
other more heretical languages, when
Befunge loops, its instruction pointer
physically moves in circles. As such,
we see the code brilliantly model the
program’s behavior.

1



Figure 1: A FizzBuzz Program

1. Not Java

2. Java

3. A Type Theorists’ Nightmare

4. Misaligned

5. Dirty HacksTM

6. Befunge

Figure 2: Top Languages (githut.info)

2 Single-Threaded
Limitations

Given all of these premiere features,
one might wonder what prevents Be-
funge from ascending to the ranks of
the top languages. As Figure 2 shows,
Befunge is only the 6th most popu-
lar language on Github. We specu-
late that this is due to the major limit-

ing factor that befunge does not sup-
port multi-threading. In an age of
big data and massively parallel com-
puter systems, we find that Befunge’s
requirement that it operate linearly at
all times to be insufficient for the mod-
ern world. As such we propose an ad-
dendum to the Befunge specification
that supports these multi-threaded ap-
plications entitled Befungell.

3 Prior Work

Although this may come as a surprise,
Befungell is not the first attempt at

making a multi-threaded befunge ap-
plication. In fact, a number of fun-
geoids have attempted this. However,
they all suck.

2

http://githut.info


4 Design Choices

One of the first major design decisions
that came with Befungell was its name.
We wanted to both pay homage to the
language on which it is based, while at
the same time encapsulating the raw
power of its parallel language struc-
tures. To this end, we tried a num-
ber of different names. (See Figure 3).
However, we settled on Befungell as a
concatenation of Befunge and Ş, the
international symbol for ”parallel.” As
such, Befungell was born.

From there we had to design the
Befungell language extensions. We
wanted to treat them a bit like kernel
extensions – really annoying to do by
hand, but pretty useful if someone else
built them for you. Toward this end,
we added in two new modes of con-
current operation. One that allows for
traditional ”fork-join” parallelism and
another that provides for more compli-
cated concurrency.

Firstly, we introduced the spawn
operator denoted by =. When an in-
struction pointer enters this block, it
immediately hangs. Then, it spawns
two new threads and places one in-
truction pointer at the left of the =
sign, and one at the right. Both in-
struction pointers will be moving away
from the spawn operator. Each in-
struction pointer will operate in their
own thread and with a stack copied
from the parent process. They can
then operate independently until they
encounter a termination symbol (@).
Once they reach such a symbol, the
top value is popped off their stack and
pushed onto the stack of the parent
process. Then the child thread is ter-
minated. Once both spawned children

have been killed, the original spawning
thread continues with two values from
its children. The original thread is
unfrozen and continues moving in the
same direction it began. This allows
for traditional fork-join operations in
Befungell.

We opted for the = sign because
of its inherent representation of two
parallel lines. In the same way that
Ş in Befungell represents parallelism,
so does the = operator. Further-
more, the symmetry of the icon rep-
resents the symmetry of the two cre-
ated threads, which are identical save
the duality of their location and initial
direction. You can see this in practice
in Figure 4

However, for those who desire more
control from their threads, we allow for
inter thread communication in Befun-
gell via the operations grid. Since this
grid is globally readable and writable,
we made the grid shared between all
threads, and introduced atomic read
and write operations so that threads
could access the grid without worrying
about racing. In addition, we added
a single semaphore construct to the
language. This is introduced via the
new { and } operators. The } oper-
ator increments the global semaphore,
whereas { pauses the thread until the
semaphore is non-zero, then atomically
decrements it and continues the cur-
rent thread.

After significant debate, we chose
this syntax to appease those petty C
programmers who like to wrap all their
code in {Blocks}. Well, now if they
want to run concurrent code atomi-
cally, all they need to do is wrap the
sensitive region in brackets. For an ex-
ample of atomic printing, see Figure 5.

3



• Befungelized

• pfunge

• Conc’d Out

• Befungelton Spoonhauer

• Dude like, pthreads in Befunge!

• BeBfefuungnege

Figure 3: Candidate Names

Figure 4: Fibonacci using Fork-Join

Figure 5: Race Free Code

4



5 Effective
Multi-threading
In Befunge

Now that we have developed these lan-
guage constructs, we investigate the
techniques for proper multi-threading.
For this, we will use a Befun-
gell interpreter written in conjunction
with this paper available online at
github.com/zwade/Befungell.

Already we have shown example
programs that make use of these new
parallel language constructs. However,
other than by being a certified ge-
nius like me, one might wonder how to
go about designing parallel and con-
current Befungell programs. To this
end, we will introduce some elemen-
tary techniques that can be combined
to form more complex Befungell struc-
tures.

The first of these structures is the
parallel subroutine. By using a spawn
operator, we can compute two pieces of
data in parallel, and then have them
return to the parent. However, if
we only want to have one subroutine
start while execution continues nor-
mally, one might wonder how we would
go about this. One technique is to have
the subroutine be executed in a critical
(semaphore protected) block. Then,
prior to leaving that block, it writes its
data to a dedicated square on the grid.
Then, the second thread spawned with
the spawn operator will continue nor-

mal execution, and when the new con-
troller thread needs to read that data
value, it will first pass through a criti-
cal protected block. This can be visu-
alized in Figure 6.

Another issue one might encounter
when writing concurrent Befungell is
a limitation imposed by having only
a single semaphore – i.e. only being
able to introduce one lock at a time.
However, it is actually possible to cre-
ate new locks in Befungell by making
use of the atomic grid operations. Say
that thread A wants to pause execution
until thread B has finished computing
some value. We can have thread A spin
while it waits, and then have thread B
modify the grid at thread A’s location
to allow As execution to continue. For
an example of how this looks in prac-
tice, consult Figure 7.

The final structure we will consider
is a reader-writer lock. We will only
go into a high level overview of how
this works, since the underlying struc-
tures have already been described, but
we may use a combination of the singu-
lar (built-in) mutex and a spin mutex
to achieve a lock that can be read by
many entities at a time, but only writ-
ten by one. To do this, we will have
a reader lock protected by the builtin
semaphore, and a writer lock protected
by the spin mutex. The actual im-
plementation of this should be imme-
diately apparent and trivial to imple-
ment.

6 Conclusion

Well, if you’ve reached this point in the
paper, I must say, thanks Mom. I’m
surprised you managed to stick with it
this long. Hopefully, this paper has il-
luminated and elucidated the benefits

and potential of multi-threading in Be-
funge. Furthermore, I hope it that it
has shown the true power of Befungell
as a language extension. On a slightly
more serious note, one might wonder
if Befungell has any actual use. One
of the things I found while working

5

https://github.com/zwade/Befungell


Figure 6: Parallel Subroutine

on this paper is that integrating con-
currency and parallelism into a very
visual language like Befunge made it
far easier to conceptualize what oc-
curs during execution. Befungell, as
silly as it is, with sufficient visual over-
haul could make an interesting and po-
tentially useful language for introduc-
ing more difficult programming con-

cepts to young students. Because of
its strong analogue to the real world,
children may find it easier to transform
their ideas into an executable program.
It may be worth investigating this fur-
ther, and seeing how it could be ap-
plied as an educational tool.

Finally, in conclusion, Befunge
Good, Befungell GooderTM.

Figure 7: Semaphore-Free Lock

6



References

[1] Matthew Savage. “Going Bananas: Modeling Chaos Theory with Unex-
pected Behavior in C”, Carnegie Mellon: SIGBOVIK Press, 2018.

[2] My 15-312 TA. Why Every Language is Terrible, Carnegie Mellon: Recita-
tion Notes, 2017.

[3] vsync. “vsync’s Funge Stuff.” Internet: quadium.net/funge, January 1, 1993,
[Epilepsy Warning]

[4] Carlo Zapponi. “Githut - Programming Languages and Github.” Internet:
githut.info, 2014, [March 12, 2017]

[5] Zachary Wade, “What do you mean I can’t do CodeForces in Befunge!.”
Rant, 2016

[6] David Lanman, “Do it: Why you should write a paper about Concurrent
Befunge.” Facebook Messenger, March 1st 2017

[7] Harry Qandyqorn Bovik, “An Investigation into the Paranormal History of
Python.” New York: Fictional Press, 1993

7

http://quadium.net/funge/
http://githut.info

	Befunge: A Background
	Single-Threaded Limitations
	Prior Work
	Design Choices
	Effective Multi-threading In Befunge
	Conclusion

